Ionic binding of C3 to the human pathogen Moraxella catarrhalis is a unique mechanism for combating innate immunity.
نویسندگان
چکیده
Moraxella catarrhalis ubiquitous surface proteins A1 and A2 (UspA1/A2) interfere with the classical pathway of the complement system by binding C4b-binding protein. In this study we demonstrate that M. catarrhalis UspA1 and A2 noncovalently and in a dose-dependent manner bind both the third component of complement (C3) from EDTA-treated serum and methylamine-treated C3. In contrast, related Moraxella subspecies (n = 13) or other human pathogenic bacteria (n = 13) do not bind C3 or methylamine-treated C3. Experiments with recombinant proteins and M. catarrhalis mutants devoid of UspA1/A2 revealed that UspA1/A2 exert their actions by absorbing and neutralizing C3 from serum and restrain complement activation. UspA2 was responsible for most of the effect, and the Moraxella mutant lacking UspA2 was more sensitive to the lytic effect of human serum compared with the wild type. Interestingly, among the large number of bacteria analyzed, only M. catarrhalis has this unique ability to interfere with the innate immune system of complement by binding C3.
منابع مشابه
MID and UspA1/A2 of the human respiratory pathogen Moraxella catarrhalis, and interactions with the human host as basis for vaccine development.
Moraxella catarrhalis IgD-binding protein MID is a 200 kDa autotransporter protein that exists as a oligomer and is governed at the transcriptional level. The majority of M. catarrhalis clinical isolates expresses MID. Two functional domains have been attributed to MID; MID764-913 functions as an adhesin and promotes the bacteria to attach to epithelial cells, whereas the IgD-binding domain is ...
متن کاملReview MID and UspA1/A2 of the human respiratory pathogen Moraxella catarrhalis, and interactions with the human host as basis for vaccine development*
Moraxella catarrhalis IgD-binding protein MID is a 200 kDa autotransporter protein that exists as a oligomer and is governed at the transcriptional level. The majority of M. catarrhalis clinical isolates expresses MID. Two functional domains have been attributed to MID; MID764-913 functions as an adhesin and promotes the bacteria to attach to epithelial cells, whereas the IgD-binding domain is ...
متن کاملCollagen VI Is Upregulated in COPD and Serves Both as an Adhesive Target and a Bactericidal Barrier for Moraxella catarrhalis.
Moraxella catarrhalis is a Gram-negative human mucosal commensal and pathogen. It is a common cause of exacerbation in chronic obstructive pulmonary disease (COPD). During the process of infection, host colonization correlates with recognition of host molecular patterns. Importantly, in COPD patients with compromised epithelial integrity the underlying extracellular matrix is exposed and provid...
متن کاملMoraxella catarrhalis Binds Plasminogen To Evade Host Innate Immunity.
Several bacterial species recruit the complement regulators C4b-binding protein, factor H, and vitronectin, resulting in resistance against the bactericidal activity of human serum. It was recently demonstrated that bacteria also bind plasminogen, which is converted to plasmin that degrades C3b and C5. In this study, we found that a series of clinical isolates (n = 58) of the respiratory pathog...
متن کاملHaemophilus influenzae survival during complement-mediated attacks is promoted by Moraxella catarrhalis outer membrane vesicles.
Moraxella catarrhalis causes respiratory tract infections in children and in adults with chronic obstructive pulmonary disease. It is often isolated as a copathogen with Haemophilus influenzae. The underlying mechanism for this cohabitation is unclear. Here, in clinical specimens from a patient with M. catarrhalis infection, we document that outer membrane vesicles (OMVs) carrying ubiquitous su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 175 6 شماره
صفحات -
تاریخ انتشار 2005